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A forbidden zones theorem is deduced in the present article. Its 

consequences and applications are preliminary considered.  

The following statement is proven: if some non-zero lower bound 

exists for the variance of a random variable, that takes on values in a 

finite interval, then non-zero bounds or forbidden zones exist for its 

expectation near the boundaries of the interval.  

The article is motivated by the need of rigorous theoretical support 

for the practical analysis that has been performed for the influence of 

scattering and noise in the behavioral economics, decision sciences, 

utility and prospect theories.  

If a noise can be one of possible causes of the above lower bound 

on the variance, then it can cause or broaden out such forbidden 

zones. So the theorem can provide new possibilities for mathematical 

description of the influence of such a noise.  

The considered forbidden zones can evidently lead to some biases 

in measurements.  

 

MSC codes:  60A86; 62C86  

JEL codes:  C1; C02; D8; D81 

Keywords:  probability; variance; noise; utility theory; prospect 

theory; behavioral economics; decision sciences; measurement; 

 

 

 

 

 

 

 



2 

 

 

Contents  

 

1. Introduction …………………………………………………….  3 

1.1. Moments, functions and bounds  

1.2. Practical needs of consideration  

1.3. Two ways. Variance, expectation and forbidden zones  

 

2. Theorem …………………………………………………………..  7 

2.1. Preliminaries  

2.2. Conditions of the variance maximality  

2.3. Existence theorem  

 

3. Consequences of the theorem. Examples ……………………  9 

3.1. Practical need and general implication  

3.2. Minimal variance. Data scattering. Noise  

3.3. Practical example of existence. Ships and waves  

3.4. Practical examples of existence. Washing machine, drill, …  

3.5. General example. Rigidness. Pressing. Sure outcomes  

 

4. Applications of the theorem. Newness ……………………….. 12 

4.1. Practical applications in behavioral economics and decision sciences  

4.2. Practical numerical example of applications. Gains  

4.3. Practical numerical example of applications. Losses  

4.4. Practical applications. Newness 

4.5. Possible applications. Noise. Biases of measurements’ data  

 

5. Conclusions ………………………………………………………. 19 

 

Acknowledgements …………………………………………….. 21 

References ……………………………………………………….. 22 

 

Appendix. Lemmas of variance maximality conditions ………… 24 

 



3 

 

 

1.  Introduction  

1.1.  Moments, functions and bounds  

 

The construction of bounds for functions of random variables is considered in 

a number of works. At that, information about the moments of random variables is 

widely used.  

Bounds for the probabilities and expectations of convex functions of discrete 

random variables with finite support are studied in Prékopa (1990).  

Inequalities for the expectations of functions are studied in Prékopa (1992). 

These inequalities are based on information of the moments of discrete random 

variables.  

A class of lower bounds on the expectation of a convex function using the first 

two moments of the random variable with a bounded support is considered in 

Dokov and Morton (2005).  

Bounds on the exponential moments of  ),min( Xy   and  }{ yXIX <   using 

the first two moments of the random variable  X  are considered in Pinelis (2011).  

 

1.2.  Practical needs of consideration  

 

There are a number of well-known basic problems concerned with the 

mathematical description of the behavior of a man. They are most important in 

behavioral economics in utility and prospect theories (and also in decision sciences, 

social sciences and psychology). Examples of the problems are the underweighting 

of high and the overweighting of low probabilities, risk aversion, the Allais 

paradox, risk premium, the four-fold pattern paradox, etc.  

The present article is motivated in large measure by the need of rigorous 

mathematical support for the already performed analysis of the influence of 

scattering and noisiness of data. The idea of the theorem considered here has 

explained, at least partially, the above problems (see, e.g., Harin 2012a, Harin 

2012b, Harin 2015).  

The above basic problems are pointed out, e.g., in Kahneman and Thaler 

(2006). In particular, see p. 222 paragraph 2:  

“A long series of modern challenges to utility theory, starting with 

the paradoxes of Allais (1953) and Ellsberg (1961) and including framing 

effects, have demonstrated inconsistency in preferences”  
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There are also general opinions in Kahneman and Thaler (2006): see p. 221, 

Abstract (the boldface is my own):  

“Economics can be distinguished from other social sciences by the 

belief that most (all?) behavior can be explained by assuming that rational 

agents with stable, well-defined preferences interact in markets that 

(eventually) clear. An empirical result qualifies as an anomaly if it is 

difficult to rationalize or if implausible assumptions are necessary to 

explain it within the paradigm.” 

and see ibid p. 221, Introduction, paragraph 1 (the boldface is my own):  

 “The assumption that utility is always maximized allows often 

surprising inferences about the nature of the desires that guide people’s 

ever-rational choices. This methodology has had many uses and 

undeniably has charm for economists, but it rests on the shaky foundation 

of an implausible and untested assumption. In this column, we discuss a 

version of the utility maximization hypothesis that can be tested—and we 

find that it is false.” 

Thaler declared similar opinions even more hard in Thaler (2016): see p. 

1597, Conclusions, paragraph 1 (the boldface is my own):  

“There is one central theme of this essay: it is time to fully embrace 

what I would call evidence-based economics. This should not be a hard 

sell. Economists use the most sophisticated statistical techniques of any 

social science, have access to increasingly large and rich datasets, and 

have embraced numerous new methods from experiments (both lab and 

field) to brain imaging to machine learning. Furthermore, economics has 

become an increasingly empirical discipline. Hamermesh (2013) finds 

that the percentage of “theory” papers in top economics journals has 

fallen from 50.7 percent in 1963 to 19.1 percent in 2011. We are 

undeniably an empirical discipline—so let’s embrace that.  

So one can say that the need and aim of the present article are also, in a sense, 

to make economics finally be a little closer to the “theory.”  
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The essence of some of the above problems consists in biases of preferences 

and decisions of a man in comparison with predictions of the probability theory. 

These biases are maximal near the boundaries of the probability scale, that is, at 

high and low probabilities.  

For example, in Thaler (2016), p. 1582, paragraphs 1-4 (the boldface is my 

own):  

“Problem 1.—Imagine that you face the following pair of 

concurrent decisions.  

First examine both decisions, and then indicate the options you 

prefer.  

Decision (i) Choose between:  

A. A sure gain of $240 [84%]  

B. 25% chance to gain $1,000 and 75% chance to gain or 

lose nothing [16%]  

Decision (ii) Choose between:  

C. A sure loss of $750 [13%]  

D. A 75% chance to lose $1,000 and a 25% chance to lose 

nothing [87%]  

The numbers in brackets indicate the percentage of subjects that 

chose that option.  

We observe a pattern that was frequently displayed: subjects were 

risk averse in the domain of gains but risk seeking in the domain of 

losses.  

These and similar examples will be simplified and considered below in the 

sections 3 and 4.  

Note that subjects change their preferences from aversion to seeking and vice 

versa not only when the domain are changed from gains to losses but from high to 

low probabilities as well.  

So the need of the present article is also to consider situations near the 

boundaries.  
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1.3.  Two ways. Variance, expectation and forbidden zones  

 

Many efforts were applied to solve the above basic problems of behavioral 

economics and other sciences.  

One of possible ways to solve them is widely discussed, e.g., in Schoemaker 

and Hershey (1992), Hey and Orme (1994), Chay et al (2005), Butler and Loomes 

(2007). The essence of this way consists in a proper attention to uncertainty, 

imprecision, noise, incompleteness and other reasons that might cause dispersion, 

scattering and spread of data.  

Another possible way to solve these problems is to consider the vicinities of 

the borders of the probability scale, e.g. at  p~1.  Steingrimsson and Luce (2007) 

and Aczél and Luce (2007) emphasized a fundamental question:  whether Prelec’s 

weighting function  W(p)  (see Prelec, 1998)  is equal to  1  at  p=1.   

In any case, one may suppose that a synthesis of the above two ways can be of 

interest. This idea of the synthesis turned out to be useful indeed. It has been 

successful to explain, at least partially, the underweighting of high and the 

overweighting of low probabilities, risk aversion, and some other problems (see, 

e.g., Harin 2012a, Harin 2012b and Harin 2015). There exist also a more general 

approach (see, e.g., Harin 2007 and Harin 2014b) and works about experimental 

support of the obtained results (see, e.g., Harin 2014a and Harin 2016).  

In the present article some information about the variance of a random 

variable that takes on values in a finite closed interval is used to estimate bounds on 

its expectation. It is proven that if there is a non-zero lower bound on the variance 

of the variable, then non-zero bounds or forbidden zones for its expectation exist 

near the boundaries of the interval.  

The role of a noise, as a possible cause of these forbidden zones and their 

possible influence on results of measurements near the boundaries of intervals are 

preliminary considered as well.  

Keeping in mind the above bounds on functions of random variables Prékopa 

(1990), Prékopa (1992), Dokov and Morton (2005) and Pinelis (2011), functions of 

the expectation of a random variable can be further investigated.  

Due to the convenience of abbreviations and consonant with the usage in 

previous works, here the terms “bound” and “forbidden zones” will sometimes be 

referred to with the term "restriction," especially in mathematical expressions, using 

its first letter "r"  or "R,"  for example  "rExpect"  or  "rµ"  or  "R."   

 



7 

 

 

2.  Theorem  

2.1.  Preliminaries  

 

The practical need of the article is a discrete random variable taking the finite 

number of values. This corresponds to usual finite numbers of measurements in the 

behavioral economics. A general case will be considered here nevertheless.  

Let us consider a probability space  (Ω, Æ, P)  and a random variable  X,  such 

that  Ω  R.  Suppose that the support of  X  is an interval  ∞<−< )(0:],[ abba .  

Suppose that  X  can have a continuous part and a discrete part and at least one of 

these parts is not identically equal to zero.  
Let us denote the possible discrete values of  X  as ,}{ kx  ,,...,2,1 Kk =   where  

1≥K ,  and  bxa k ≤≤ ,  and the possible continuous values of  X  as  ],[ bax∈ .   

Under the condition  

1)()()()(
11

=+=+ ∫∑∫∑
=

+∞

∞−=

b

a

K

k

kX

K

k

kX dxxfxfdxxfxf ,  

let us consider the expectation of  X   

µ≡+≡ ∫∑
=

b

a

K

k

kXk dxxxfxfxXE )()(][
1

,  

its variance  

22

1

22 )()()(][ σµµ ≡+−=− ∫∑
=

b

a

K

k

kXk dxxfxxfxXE   

and possible interrelationships between them.  

 

2.2.  Conditions of the variance maximality  

 

The maximal value of the variance of a random variable of any type is 

intuitively equal to the variance of the discrete random variable whose probability 

mass function has only two non-zero values located at the boundaries of the 

interval. This statement is nevertheless proven in lemmas in the Appendix.  

Such a probability mass function can be represented by the two values       

fX(a) = (b-μ)/(b-a)  and  fX(b) = (μ-a)/(b-a).  The following inequality is 

consequently true for the variance of the considered random variable  X   

))(()()(][ 222 µµµµµµµ −−=
−
−

−+
−
−

−≤− ba
ab

a
b

ab

b
aXE .  (1)  
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2.3.  Existence theorem  

 

Theorem. Suppose a random variable  X  takes on values in an interval  [a, b],  

0 < (b-a) < ∞.  If there is some minimal non-zero variance  σ2
Min > 0 : E[X-μ]2 ≥ 

σ2
Min,  then some non-zero bounds (restrictions)  rµ ≡ rExpect ≡ rRestrict.Expect > 0  exist 

on its expectation  μ ≡ E[X]  near the boundaries of the interval  [a, b],  that is  

brbraa <−≤≤+< )()( µµ µ .      (2).  

Proof. It follows from (1) and the hypotheses of the theorem that  

))((][0 22 µµµσ −−≤−≤< baXEMin .  

For the boundary  a  this leads to the inequalities  ))((2 abaMin −−≤ µσ   and  

ab
a

Min

−
+≥

2σ
µ .        (3).  

For the boundary  b  the consideration is similar and gives the inequality  

ab
b

Min

−
−≤

2σµ .        (4).  

So, if we consider the image  Iμ  of the values of the expectation  μ,  then we 

see that this image coincides with the interval  [a, b]  if the minimal variance  σ2
Min  

is equal to zero in the above inequalities (3) and (4). If the minimal variance  σ2
Min  

is more than zero, then  Iμ  is divided into the three zones.  

These zones are the two forbidden zones  Rμ  or simply  R  and the residual 

obtainable or open zone  Oμ  (or simply  O).  The forbidden zones are located near 

the boundaries of the interval  [a, b], they can be denoted as  Ra  and  Rb.  They are 

restricted for the values of the expectation  μ.  The residual obtainable zone  O  is 

obtainable, open for the values of the expectation  μ.   

Denoting the bounds (restrictions  rµ) on the expectation  µ   as  

ab
r

Min

−
≡

2σ
µ ,  

and using (3) and (4), we obtain the generalized inequalities  

µµ µ rbra −≤≤+  .  

Therefore, if the inequalities  0 < (b-a) < ∞  and  σ2
Min > 0  are true, then the 

non-zero bounds (restrictions)  rµ > 0  exist, such that the inequalities (2)  

brbraa <−≤≤+< )()( µµ µ   

are satisfied, which proves the theorem.  
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3.  Consequences of the theorem. Examples 

3.1.  Practical need and general implication  

 

The initial reason of the above theorem was to describe and explain the 

practical experiments in behavioral economics.  

Due to the need of financial incentives for subjects of the experiments and to 

the finiteness of financial possibilities of experimenter’s teams, the numbers of 

experimental results are necessarily finite.  

The theorem meets this practical need. In addition to its practical value, the 

theorem proves that this result is true for any random variable.  

 

3.2.  Minimal variance. Data scattering. Noise  

 

The theorem states that the factor, which leads to the forbidden zones and 

determines their widths, is the non-zero minimal variance. It is exactly the minimal 

variance, not the variance itself.  

There can be a wealth of causes of this non-zero minimal variance. It can be 

caused evidently by any non-zero scattering and spread of data. The list of such 

causes is rather wide. It includes a noise, imprecision, errors, incompleteness, 

various types of uncertainty, etc. Such causes are considered in a lot of works, e.g., 

Schoemaker and Hershey (1992), Hey and Orme (1994), Chay et al (2005), Butler 

and Loomes (2007).  

A noise can be one of usual sources of the non-zero minimal variance.  

There are many types and subtypes of noise. A hypothetic task of determining 

of an exact relationship between a level of noise and a non-zero minimal variance of 

random variables can be a rather complicated one.  

If, nevertheless, a noise leads to some non-zero minimal variance of the 

considered random variable, then such a noise leads evidently to the above non-zero 

forbidden zones. If a noise leads to some increasing of the value of this minimal 

variance then the value of these zones increase as well.  

So the theorem can provide a new mathematical tool for description of the 

influence of at least some types of a noise near the boundaries of intervals.  
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3.3.  Practical example of existence. Ships and waves  

 

Suppose the calm or mirror-like sea. Suppose a small rigid boat or any other 

small rigid floating body that is at rest in the mirror-like sea. Suppose that this boat 

or the body rests in the mirror-like sea right against (or be constantly touching) the 

moorage wall (that is also rigid).  

As long as the sea is calm, the expectation of its side can touch the wall.  

Suppose the heavy sea. Suppose a small rigid boat or any other small rigid 

floating body that oscillates on waves in the heavy sea. Suppose that this boat or the 

body oscillates on waves near the rigid moorage wall.  

When the boat is oscillated by sea waves, then its side oscillates also (both up-

down and left-right) and it can touch the wall only in the nearest extremity of the 

oscillations. Therefore, the expectation of the side cannot touch the wall (if the 

oscillations are non-zero). Therefore, the expectation of the side is biased from the 

wall.   

So, one can say that, in the presence of the waves, a forbidden zone exists 

between the expectation of the side and the wall.   

This forbidden zone biases and separates the expectation from the wall. The 

width of the forbidden zone is roughly about a half of the amplitude of the 

oscillations. 

 

3.4.  Practical examples of existence. Washing machine, drill, …  

 

Suppose a washing machine that can vibrate when pressing bed linen. 

Suppose the washing machine near a rigid wall. Suppose an edgeless side of a drill 

or any other rigid body that can vibrate is located near a rigid surface or wall.  

If the washing machine or the drill is at rest, then the expectation of its 

edgeless side can be located right against (be constantly touching) the wall.  

If the washing machine or the drill vibrates, then the expectation of its 

edgeless side is biased and kept away from the wall due to its vibrations.  
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3.5.  General example. Rigidness. Pressing. Sure outcomes 

 

The same is true for any other rigid body near any rigid surface or wall.  

If the body is at rest, then the expectation of its side can be located right 

against the wall (be constantly touching the wall). If the body vibrates, then the 

expectation of its side is biased and kept away from the wall by the vibrations of the 

body.  

In other words, a forbidden zone arises between the rigid wall (surface) and 

the expectation of the side of the rigid body, when the body vibrates. The width of 

the forbidden zone is roughly about a half of the amplitude of the vibrations.  

The above rigid boat near rigid moorage wall, rigid washing machine near 

rigid wall and rigid drill near rigid surface were the examples of a rigid body that 

can vibrate or oscillate near a rigid boundary (a rigid surface).  

What do the conditions of “rigid” body and “rigid” boundary mean?   

If either the body or the boundary or the both are not rigid, then the vibrations 

and oscillations can be suppressed partially or even totally. Hence the forbidden 

zone can be suppressed also.  

If a vibrating rigid body is pressed by some pressing force or pressure plate to 

a rigid surface, then the forbidden zone can be suppressed either partially or even 

totally, depending on the parameters of the pressure.  

This suppression corresponds to the case of sure outcomes in the behavioral 

economics.  

The term “sure” presumes here that some additional efforts are applied to 

guarantee this sure outcome in comparison with the probable ones. This leads to 

some qualitative difference between these probable and sure outcomes. This can 

lead to some quantitative difference between the widths of the forbidden zones for 

the expectations of data in these probable and sure outcomes.  

Due to the additional guaranteeing efforts, the width of the forbidden zones 

for the expectations of data in the sure outcomes can be less than the width for the 

probable outcomes. The width for the sure outcomes can even be equal to zero, 

what means that the cause of the forbidden zones is too weak to overcome the 

additional guaranteeing efforts.  
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4.  Applications of the theorem. Newness  

4.1.  Practical applications in behavioral economics and decision sciences  

 

The idea of the considered forbidden zones was applied, e.g., in Harin 

(2012b). This work was devoted to the well-known problems of behavioral 

economics, decision sciences, utility and prospect theories. Such problems were 

pointed out, e.g., in Kahneman and Thaler (2006).  

In Harin (2012b), some examples of typical paradoxes were studied. The 

studied and similar paradoxes may concern problems such as the underweighting of 

high and the overweighting of low probabilities, risk aversion, etc.  

The dispersion and noisiness of the initial data can lead to the forbidden zones 

for the expectations of these data. This should be taken into account when dealing 

with these kinds of problems. The described above forbidden zones explained, at 

least partially, the analyzed examples of paradoxes.  

 

4.2.  Practical numerical examples of applications. Gains  

 

The above example of Thaler (2016) can be simplified similar to Harin 

(2012b).  

Imagine that you face the following pair of concurrent decisions.  

Choose between:  

A)  A sure gain of $99.  

B)  99% chance to gain $100 and 1% chance to gain or lose nothing.  

 

Ideal case  

 

In the ideal case without the forbidden zones, the probable gain has the 

probability 99% and the expected values for the probable and sure outcomes are  

99$%10099$ =× ,  

99$%99100$ =× .  

Here, the expected values are exactly equal to each other  

99$99$ = .  

 



13 

 

 

Forbidden zones  

 

Let us consider the case of the forbidden zones.  

Suppose that the width of the forbidden zones for the expectations of data in 

the probable outcome is equal to, say,  $2.   

Let us consider the case when the width of the forbidden zones for the 

expectations of data in the sure outcome can be less than the width for the probable 

outcome and is equal to, say,  $1.  We have  

98$1$99$1$%10099$ =−=−× ,  

97$2$99$2$%99100$ =−=−× .  

Here, the both expected values are biased, but the sure expected value is biased less 

than the probable one and we have  

97$98$ > .  

Here, the sure gain is (due to the difference and obvious preference between the 

expected values) more preferable than the probable one.  

Let us consider the case when the width of the forbidden zones for the 

expectations of data in the sure outcome is equal to zero. We have  

99$%10099$ =× ,  

97$2$99$2$%99100$ =−=−× .  

Here, the probable expected value is biased but the sure expected value is not  

97$99$ > .  

Here, the sure gain is all the more preferable than the probable one.  

So, the forbidden zones and their natural difference for probable and sure 

outcomes can predict the experimental fact that the subjects are risk averse in the 

domain of gains. They explain, at least qualitatively or partially, the analyzed 

example of Thaler (2016) and many other similar results.   

The theorem provides the mathematical support for the solution in the domain 

of gains. 
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4.3.  Practical numerical examples of applications. Losses  

 

The case of gains has been explained many times in a lot of ways. The 

uniform explanation for both gains and losses, without additional suppositions, such 

as Kahneman and Tversky (1979), has not been recognized by the present article’s 

author nevertheless.  

Let us consider the case of losses.  

Imagine that you face the following pair of concurrent decisions. Choose 

between:  

A)  A sure loss of $99.  

B)  99% chance to loss $100 and 1% chance to gain or lose nothing.  

 

Ideal case  

 

In the ideal case without the forbidden zones, the probable loss has the 

probability 99% and the expected values for the probable and sure outcomes are  

99$%10099$ −=×− ,  

99$%99100$ −=×− .  

Here, the expected values are exactly equal to each other  

99$99$ −=− .  
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Forbidden zones  

 

Let us consider the case of the forbidden zones.  

Suppose that the width of the forbidden zones for the expectations of data in 

the probable outcome is equal to, say,  $2.   

Let us consider the case when the width of the forbidden zones for the 

expectations of data in the sure outcome can be less than that for the probable 

outcome and is equal to, say,  $1.   

Note that the forbidden zone biases the expectation from the boundary of the 

interval to its middle. The width of the forbidden zone is subtracted from the 

absolute value of the gain/loss therefore. That is the width of the forbidden zone is 

subtracted from the value of the gain and added to the value of the loss.  

We have  

98$1$99$1$%10099$ −=+−=+×− ,  

97$2$99$2$%99100$ −=+−=+×− .  

Here, the both expected values are biased, the sure expected value is biased less 

than the probable one as in the case of gains, but here the bias increases the 

advantage (preferability) of the outcome  

97$98$ −<−   

and the probable loss is (due to the difference and obvious preference between the 

expected values) more preferable than the sure one.  

Let us consider the case when the width of the forbidden zones for the 

expectations of data in the sure outcome is equal to zero. We have  

99$%10099$ −=×− ,  

97$2$99$2$%99100$ −=+−=+×− .  

Here, the probable expected value is biased but the sure expected value is not and 

we have  

97$99$ −<− .  

Here, the probable loss is all the more preferable than the sure one.  

The theorem provides the mathematical support for the solution in the domain 

of losses. 
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4.4.  Practical application. Newness 

 

So, the theorem provides the mathematical support for the solution in the 

domains of both gains and losses. 

Due to, e.g., Harin (2012b), the forbidden zones and their natural difference 

for probable and sure outcomes can predict the experimental fact that the subjects 

are risk seeking in the domain of gains but risk seeking in the domain of losses. 

They explain, at least qualitatively or partially, the analyzed examples of Thaler 

(2016) and many other similar results.  

The important feature is that, due to, e.g., Harin (2012b), the described 

forbidden zones can solve the problems and explain experimental results not only in 

the domains of the gains and losses. The important feature is also that these solution 

and explanation are uniform in all the domains and need not additional 

suppositions. Hence the forbidden zones and their natural difference for probable 

and sure outcomes can qualitatively or, at least, partially predict the experimental 

facts and solve the problems in various domains.  

The mathematical description of the above forbidden zones has been done in 

recent years. Unfortunately, these zones were not described in mathematics before.  

The analysis of the literature, comments of comments of journals’ editors and 

reviewers on similar articles and on the previous versions of the present article and 

more than 10-years experience of the editorship in NEP reports on utility and 

prospect theories (see Harin 2005-2017) allow to suppose the following.  

The mathematical support for the above solution, that is presented by the 

theorem and its consequences, is a new one.  

Why did not this evident and widespread phenomenon be mathematically 

described before? The long absence of such a description can be explained by the 

evidence of its practical applications. That is these forbidden zones can be easily 

estimated as approximately a half of the amplitude of the oscillations and there is no 

need in more detailed analysis and calculation. The phenomena that are similar to 

the forbidden zones between ships boards and moorage wall, washing machines and 

walls, etc. are evident and are usually taken into account in the cases of their 

evident and essential influence.  

The problems and paradoxes of the behavioral economics, utility and prospect 

theories are, probably, the first field where such phenomena are hidden by other 

details of experiments and hence are non-evident.  
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4.5.  Possible applications. Noise. Biases of measurements’ data  

4.5.1.  Noise  

 

Let us preliminary consider possible applications of the theorem to a noise.  

If a noise leads to some non-zero minimal variance of the considered random 

variable, then this non-zero minimal variance and, consequently, this noise leads to 

the above non-zero forbidden zones for the expectation of this variable. If a noise 

leads to some increasing of the value of this minimal variance then the width of 

these forbidden zones increases also.  

The presented theorem allows to make a step to a possible new mathematical 

tool for description of the possible influence of noise near the boundaries of finite 

intervals. In particular, if a noise leads to a non-zero minimal variance  σ2
Min : σ2 > 

σ2
Min > 0  of a random variable, then the theorem predicts the forbidden zones 

having the width  rNoise  that is not less than  

ab
r

Min

Noise −
≥

2σ
.  

So, the presented theorem is the first preliminary step to a general 

mathematical description of the possible influence of noise near the boundaries of 

finite intervals.  

 

4.5.2.  Biases of measurements’ data  

 

Let us preliminary consider possible applications of the theorem to possible 

biases of measurements’ data.  

The considered forbidden zones can evidently lead to some biases in 

measurements. We can preliminary consider this a bit closer. Suppose some 

measurements are preformed on a finite interval and its result is the expectation of 

measurements’ data. Suppose some forbidden zones arise near the boundaries of the 

interval due to the minimal variance of the data.  

The expectations of the data of the measurements cannot be indeed located 

inside the forbidden zones. They cannot be located closer to the boundaries of the 

interval than the width of the forbidden zone.  
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The above forbidden zones can cause biases for the expectations of the data of 

measurements. The biases are directed from the boundaries to the middle of the 

interval. The biases have the opposite signs near the opposite boundaries of the 

interval. The absolute values of the biases decrease from the boundaries to the 

middle of the interval.  

When the minimal variance of the data is equal to zero, then the expectations 

of the data of measurements can touch the boundaries of the interval. When the 

above forbidden zones are not taken into the consideration then the estimated results 

are also located closer to the boundaries than the real case.  

 

 

In particular, if the minimal variance of the data  σ2
Min  is non-zero, that is if  

σ2 > σ2
Min > 0, then the theorem predicts that near the boundaries of intervals, the 

absolute value  ΔBias  of the biases is not less than  

ab

Min

Bias −
≥∆

2

||
σ

.  

So, the presented theorem, its consequences and applications can be 

considered as the first preliminary step to a general mathematical description of the 

biases of measurements’ data near the boundaries of finite intervals.  
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5.  Conclusions  

 

The article can be concluded by the following three statements:  

1)  Problems. There are well-known problems of behavioral economics (see, 

e.g., Hey and Orme 1994, Kahneman and Thaler 2006, Thaler 2016). Typical 

problems consist in comparison of sure and probable outcomes. They are the most 

pronounced near the boundaries of intervals.  

For example, Thaler in Thaler (2016) noted (the boldface is my own):  

“We observe a pattern that was frequently displayed: subjects were risk 

averse in the domain of gains but risk seeking in the domain of losses.”  

The examples of Thaler (2016) can be simplified similar to Harin (2012b):  

Domain of gains. Choose between: A)  A sure gain of $99. B)  99% chance to 

gain $100 and 1% chance to gain or lose nothing. The expectations are  

%99100$99$99$%10099$ ×===× ,  

Domain of losses. Choose between: A)  A sure loss of $99. B)  99% chance to 

loss $100 and 1% chance to gain or lose nothing.  

%99100$99$99$%10099$ ×−=−=−=×− ,  

In the both cases the expected values are exactly equal to each other. 

Nevertheless the preferences of the subjects are essentially biased in the opposite 

directions for gains and losses. This is the well-known and fundamental paradox of 

the behavioral economics.  

2)  Solution of the problems. There is a solution of these problems (see, e.g., 

Harin 2012a, Harin 2012b, Harin 2015). It consists in the idea of forbidden zones 

near the boundaries of finite intervals. These forbidden zones allow to solve the 

above problems.  

3)  Mathematical support for the solution. The presented theorem, its 

consequence and applications provide the mathematical support for the solution.  

The presented theorem proves that, for a finite interval  [a, b]  under the 

condition of existence of the non-zero minimal variance  σ2
Min : σ2 > σ2

Min > 0,  the 

expectation  µ   of measurements’ data is bounded as 

ab
b

ab
a

MinMin

−
−≤≤

−
+

22 σµσ
.  

In other words, the theorem proves the existence of the forbidden zones.  
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The forbidden zone biases the expectation from the boundary of the interval to 

its middle. The width of the forbidden zone is subtracted from the absolute value of 

the gain/loss therefore. That means that the width of the forbidden zone is 

subtracted from the value of the gain and added to the value of the loss.  

Suppose that the width of the forbidden zones is equal to  $2  for the probable 

outcomes and, for the simplicity, zero for the sure outcomes.  

In the case of gains we have  

99$%10099$ =× ,  

97$2$99$2$%99100$ =−=−× .  

Here, the probable expected value is biased but the sure expected value is not  

97$99$ > .  

The sure gain is more preferable than the probable one, as is supported by a wealth 

of experiments.  

In the case of losses we have  

99$%10099$ −=×− ,  

97$2$99$2$%99100$ −=+−=+×− .  

Here, the probable expected value is biased but the sure expected value is not and 

we have  

97$99$ −<− .  

The probable gain is more preferable than the sure one, as is supported by a wealth 

of experiments.  

So the theorem, its consequence and applications provide the uniform 

mathematical support for the solution in more than one domain. This is, at least, a 

rare if not unique result for the considered problems.  

Main particular contribution. The main particular contribution of the 

present article is this mathematical support for the solution of the above problems of 

behavioral economics.  
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Possible additional general contributions. Two more possible additional 

general contributions can be preliminary mentioned:  

4)  Possible general addition. Noise. In addition, the presented theorem is the 

first preliminary step to a general mathematical description of the possible influence 

of noise near the boundaries of finite intervals. In particular, if a noise leads to a 

non-zero minimal variance  σ2
Min : σ2 > σ2

Min > 0  of a random variable, then the 

theorem predicts the forbidden zones having the width  rNoise  that is not less than  

ab
r

Min

Noise −
≥

2σ
.  

5)  Possible general addition. Biases of the data of measurements. In 

addition, the presented theorem is the first preliminary step to a general 

mathematical description of the biases of measurements’ data near the boundaries 

of finite intervals. In particular, if the minimal variance of the data  σ2
Min  is non-

zero, that is if  σ2 > σ2
Min > 0, then the theorem predicts the biases of measurements’ 

data. The biases have the opposite signs near the opposite boundaries, are maximal 

near the boundaries and tend to zero in the middles of the intervals. Near the 

boundaries of intervals, the absolute value  ΔBias  of the biases is not less than  

ab

Min

Bias −
≥∆

2

||
σ

.  
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Appendix. Lemmas of variance maximality conditions  

Preliminaries  

 

The initial particular need is the mathematical support for the solution (see, 

e.g., Harin 2012a, Harin 2012b and Harin 2015) of the problems of behavioral 

economics. These problems take place for the discrete finite random variables. 

Nevertheless let us give the support for the general case.  

In the general case, we have (see subsection 2.1)  

∫∑ −+−=−
=

b

a

K

k

kk dxxfxxpxXE )()()()(][ 2

1

22 µµµ .  

under the condition that either the probability mass function or probability density 

function or alternatively both of them are not identically equal to zero, or  

1)()(
1

=+ ∫∑
=

b

a

K

k

k dxxfxp .  

Pairs of values that mean value coincides with the expectation of the random 

variable were used, e.g., in Harin (2013). More arbitrary choice of pairs of values 

was used in Harin (2017). Here every discrete and infinitesimal value will be 

divided into the pair of values in the following manner:  

Let us divide every value  p(xk)  into the two values located at  a  and  b   

ab

xb
xp k

k −
−

)(     and    
ab

ax
xp k

k −
−

)( .  

The total value of these two parts is evidently equal to  p(xk).  The center of gravity 

of these two parts is evidently equal to  xk.   

Let us divide every value of  f(x)  into the two values located at  a  and  b   

ab

xb
xf

−
−

)(     and    
ab

ax
xf

−
−

)( .  

The total value of these two parts is evidently equal to  f(x).  The center of gravity 

of these two parts is evidently equal to  x.   

Let us prove that the variances of the divided parts are not less than those of 

the initial parts.  

 

 



25 

 

 

A1.  Lemma 1 

 

Lemma 1. Discrete part lemma. If the support of a random variable  X,  is an 

interval  ∞<−< )(0:],[ abba   and its variance can be represented as  

22

1

22 )()()(][ σµµ ≡+−=− ∫∑
=

b

a

K

k

kk dxxfxxpxXE ,  

where  p  is the probability mass function of  X,  bxa k ≤≤ ,  ,,...,2,1 Kk =   where  

1≥K   and  µ ≡ E[X]  and  

0)(
1

≥∑
=

K

k

kxp ,  

then the inequality  

∑

∑

=

=

−≥

≥





−
−

−+
−
−

−

K

k

kk

K

k

k
kk

xpx

xp
ab

ax
b

ab

xb
a

1

2

1

22

)()(

)()()(

µ

µµ
.    (16) 

is true.  

Proof. Let us find the difference between the transformed  

∑
=







−
−

−+
−
−

−
K

k

k
kk xp

ab

ax
b

ab

xb
a

1

22 )()()( µµ   

and initial  

∑
=

−
K

k

kk xpx
1

2 )()( µ   

expressions for the variance.  

Let us consider separately the cases of  xk ≥ µ  and  xk ≤ µ.   
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Case of  xk ≥ µ,   

 

If  xk ≥ µ,  then the expression in the square brackets can be simplified  




















−
−

−
−
−

−=

=



 −−

−
−

−≥

≥



 −−

−
−

−+
−
−

−

2

2

22

222

)(

)()(

)()()(

µ
µµ

µµ

µµµ

b

x

ab

ax
b

x
ab

ax
b

x
ab

ax
b

ab

xb
a

kk

k
k

k
kk

.  

Due to  xk ≤ b  and  

10 ≤
−
−

≤
µ
µ

b

xk ,  

it holds true that  

µ
µ

µ
µ

−
−

≤







−
−

b

x

b

x kk

2

  

and  

µ
µ

µ
µ

−
−

−
−
−

≥







−
−

−
−
−

b

x

ab

ax

b

x

ab

ax kkkk

2

  

and then  

µ
µ

µµ
µµ

µ
µ

−
−

−
−+−
−+−

≡
−
−

−
−
−

b

x

ab

ax

b

x

ab

ax kkkk

)()(

)()(
.  

Due to  

10 ≤
−
−

≤
ab

axk     and    0≥− aµ ,  

the inequality  

µ
µ

µµ
µµ

−
−

≥
−+−
−+−

b

x

ab

ax kk

)()(

)()(
  

is true and  

0)(

2

2 ≥



















−
−

−
−
−

−
µ
µµ

b

x

ab

ax
b kk

.  

So in the case of  xk ≥ µ  the difference between the transformed and initial 

expressions for the variance is non-negative.  
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Case of  xk ≤ µ,   

 

If  xk ≤ µ,  then  




















−
−

−
−
−

−=

=



 −−

−
−

−≥

≥



 −−

−
−

−+
−
−

−=

=



 −−

−
−

−+
−
−

−

2

2

22

222

222

)(

)()(

)()()(

)()()(

a

x

ab

xb
a

x
ab

xb
a

x
ab

ax
b

ab

xb
a

x
ab

ax
b

ab

xb
a

kk

k
k

k
kk

k
kk

µ
µµ

µµ

µµµ

µµµ

.  

Due to  

10 ≤
−
−

≤
a

xk

µ
µ

,  

we have  

a

x

ab

xb

a

x

ab

xb kkkk

−
−

−
−
−

≥







−
−

−
−
−

µ
µ

µ
µ

2

.  

Then  

a

x

ab

xb

a

x

ab

xb kkkk

−
−

−
−+−
−+−

≡
−
−

−
−
−

µ
µ

µµ
µµ

µ
µ

)()(

)()(
.  

Due to  

10 ≤
−
−

≤
a

xk

µ
µ

    and    0≥− µb   

we have  

a

x

ab

xb kk

−
−

≥
−+−
−+−

µ
µ

µµ
µµ

)()(

)()(
  

and  

0)(

2

2 ≥



















−
−

−
−
−

−
a

x

ab

xb
a kk

µ
µµ .  

So in the case of  xk ≤ µ  the difference between the transformed and initial 

expressions for the variance is non-negative.  
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Maximality  

 

So the difference  





 −−

−
−

−+
−
−

−=

=−−
−
−

−+
−
−

−

222

222

)()()()(

)()()()()()(

µµµ

µµµ

k
kk

k

kk
k

k
k

k

x
ab

ax
b

ab

xb
axp

xpx
ab

ax
xpb

ab

xb
xpa

.  

is non-negative.  

Let us calculate the difference between the transformed and initial expressions 

of the discrete part of the variance  

∑

∑∑

=

==





 −−

−
−

−+
−
−

−=

=−−





−
−

−+
−
−

−=

=−−−

K

k

kk
kk

K

k

kk

K

k

k
kk

InitialDiscrdTransformeDiscr

xpx
ab

ax
b

ab

xb
a

xpxxp
ab

ax
b

ab

xb
a

XEXE

1

222

1

2

1

22

2
.

2
.

)()()()(

)()()()()(

][][

µµµ

µµµ

µµ

.  

Every member of a sum is non-negative, as in the above expression. Hence the total 

sum is non-negative as well.  

So for the discrete case the variance is maximal when the probability mass 

function is concentrated at the boundaries of the interval.  

 

 

∑

∑∑

=

==





 −−

−
−

−+
−
−

−=

=−−





−
−

−+
−
−

−=

=−−−

K

k

kk
kk

K

k

kk

K

k

k
kk

InitialDiscrdTransformeDiscr

xpx
ab

ax
b

ab

xb
a

xpxxp
ab

ax
b

ab

xb
a

XEXE

1

222

1

2

1

22

2
.

2
.

)()()()(

)()()()()(

][][

µµµ

µµµ

µµ

.  

If every member of a sum is non-negative, as in the above expression, then the total 

sum is non-negative as well.  
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Theorem of Huygens-Steiner  

 

Also the expression  

)()()()( 22 axbxba kk −−+−− µµ .  

can be identically rewritten to  

)]()())((2)[(

)]()())((2)[(

)()]()[(

)()]()[(

22

22

2

2

axxxxbxb

xbxxaxax

axxxb

xbxax

kkkkk

kkkkk

kkk

kkk

−−+−−+−+

+−−+−−+−=

=−−+−+

+−−+−

µµ

µµ

µ

µ

.  

and  

)]())[()((2

)()()()(

)()(

)]()())((2)[(

)]()())((2)[(

22

2

22

22

µµ

µ

µµ

µµ

−+−−−+

+−−+−−+

+−−=

=−−+−−+−+

+−−+−−+−

kkkk

kkkk

k

kkkkk

kkkkk

xxxbax

axxbxbax

abx

axxxxbxb

xbxxaxax

.  

This can be transformed to  

)()()()(

)(
22

2

axbxba

x

kk

k

−−+−−

+−

µµ

µ
  

that is analogous to the theorem of Huygens-Steiner (The general possibility of 

application of the Huygens-Steiner theorem was helpfully pointed out by one of the 

anonymous referees when the preceding version of the present article was refereed)  
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A2.  Lemma 2  

 

Let the probability density function is not identically equal to zero.  

Lemma 2. Continuous part lemma. If the support of a random variable  X,  

is an interval  ∞<−< )(0:],[ abba   and its variance can be represented as  

22

1

22 )()()(][ σµµ ≡+−=− ∫∑
=

b

a

K

k

kk dxxfxxpxXE ,  

where  f  is the probability density function of  X  and  µ ≡ E[X]  and 

0)( ≥∫
b

a

dxxf ,  

then the inequality  

∫∫ −≥





−
−

−+
−
−

−
b

a

b

a

dxxfxdxxf
ab

ax
b

ab

xb
a )()()()()( 222 µµµ .  (18) 

is true.  

Proof. Let us find the difference between the transformed  

∫ 





−
−

−+
−
−

−
b

a

dxxf
ab

ax
b

ab

xb
a )()()( 22 µµ   

and initial  

∫ −
b

a

dxxfx )()( 2µ   

expressions for the variance.  

Let us consider separately the cases of  x ≥ µ  and  x ≤ µ.   
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Case of  x ≥ µ   
 

If  xk ≥ µ,  then the difference can be simplified as  












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


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−=
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−≥
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2
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ax
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ax
b

x
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xb
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Due to  x ≤ b  and  

10 ≤
−
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≤
µ
µ

b

x
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it holds true that  
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µ
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−

−
−
−
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ax

b
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Case of  x ≤ µ,   

 

If  x ≤ µ,  then the difference can be simplified as  
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Maximality  

 

Let us calculate the difference between the transformed and initial expressions 

of the continuous part of the variance  
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.  

If the integrand of an integral is non-negative for every point in the scope of the 

limits of integration as in the above expression, then the complete integral is non-

negative as well. The difference is therefore non-negative.  

So for the continuous case the variance is maximal when the probability 

density function is concentrated at the boundaries of the interval.  
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A3.  Lemma 3  

 

Let the probability mass function is not identically equal to zero.  

Lemma 3. General mixed case lemma. If the support of a random variable  

X,  is an interval  ∞<−< )(0:],[ abba   and its variance can be represented as  
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is true.  

Proof. The general mixed case is compiled from the discrete and continuous 

parts under the condition that at least one of them is not identically equal to zero. 

The conclusions concerned to these parts are true for their sum as well.  

So in any case both for the probability mass function and/or probability 

density function and/or their mixed case, the variance is maximal when the 

probability mass function and/or probability density function are concentrated at the 

boundaries of the interval in the form of the probability mass function that has only 

the two values located at the boundaries of the interval.  

 

 


